Binary to Decimal Converter
Binary to decimal converter tool to convert a binary number to decimal number or vice versa.
If you use this great tool then please comment and/or like this page.
Average Rating: Tool Views: 306
Average Rating: Tool Views: 306
Subscribe for Latest Tools
How to use this Binary to Decimal Converter Tool?
How to use Yttags's Binary to Decimal Converter?
- Step 1: Select the Tool
- Step 2: Enter Binary Number And Click On Convert Button
- Step 3: Check Your Binary to Decimal Converter Result
Binary ⇄ decimal converter, step by step conversion, solved examples and methods to learn, practice and verify binary to decimal and decimal to binary conversions.
Binary Decimal Conversion Chart Table
Binary | Decimal |
---|---|
00000001 | 1 |
00000010 | 2 |
00000011 | 3 |
00000100 | 4 |
00000101 | 5 |
00000110 | 6 |
00000111 | 7 |
00001000 | 8 |
00001001 | 9 |
00001010 | 10 |
00001011 | 11 |
00001100 | 12 |
00001101 | 13 |
00001110 | 14 |
00001111 | 15 |
00010000 | 16 |
00010001 | 17 |
00010010 | 18 |
00010011 | 19 |
00010100 | 20 |
00010101 | 21 |
00010110 | 22 |
00010111 | 23 |
00011000 | 24 |
00011001 | 25 |
00011010 | 26 |
00011011 | 27 |
00011100 | 28 |
00011101 | 29 |
00011110 | 30 |
00011111 | 31 |
00100000 | 32 |
00100001 | 33 |
00100010 | 34 |
00100011 | 35 |
00100100 | 36 |
00100101 | 37 |
00100110 | 38 |
00100111 | 39 |
00101000 | 40 |
00101001 | 41 |
00101010 | 42 |
00101011 | 43 |
00101100 | 44 |
00101101 | 45 |
00101110 | 46 |
00101111 | 47 |
00110000 | 48 |
00110001 | 49 |
00110010 | 50 |
00110011 | 51 |
00110100 | 52 |
00110101 | 53 |
00110110 | 54 |
00110111 | 55 |
00111000 | 56 |
00111001 | 57 |
00111010 | 58 |
00111011 | 59 |
00111100 | 60 |
00111101 | 61 |
00111110 | 62 |
00111111 | 63 |
01000000 | 64 |
Binary | Decimal |
---|---|
01000001 | 65 |
01000010 | 66 |
01000011 | 67 |
01000100 | 68 |
01000101 | 69 |
01000110 | 70 |
01000111 | 71 |
01001000 | 72 |
01001001 | 73 |
01001010 | 74 |
01001011 | 75 |
01001100 | 76 |
01001101 | 77 |
01001110 | 78 |
01001111 | 79 |
01010000 | 80 |
01010001 | 81 |
01010010 | 82 |
01010011 | 83 |
01010100 | 84 |
01010101 | 85 |
01010110 | 86 |
01010111 | 87 |
01011000 | 88 |
01011001 | 89 |
01011010 | 90 |
01011011 | 91 |
01011100 | 92 |
01011101 | 93 |
01011110 | 94 |
01011111 | 95 |
01100000 | 96 |
01100001 | 97 |
01100010 | 98 |
01100011 | 99 |
01100100 | 100 |
01100101 | 101 |
01100110 | 102 |
01100111 | 103 |
01101000 | 104 |
01101001 | 105 |
01101010 | 106 |
01101011 | 107 |
01101100 | 108 |
01101101 | 109 |
01101110 | 110 |
01101111 | 111 |
01110000 | 112 |
01110001 | 113 |
01110010 | 114 |
01110011 | 115 |
01110100 | 116 |
01110101 | 117 |
01110110 | 118 |
01110111 | 119 |
01111000 | 120 |
01111001 | 121 |
01111010 | 122 |
01111011 | 123 |
01111100 | 124 |
01111101 | 125 |
01111110 | 126 |
01111111 | 127 |
10000000 | 128 |
Binary | Decimal |
---|---|
10000001 | 129 |
10000010 | 130 |
10000011 | 131 |
10000100 | 132 |
10000101 | 133 |
10000110 | 134 |
10000111 | 135 |
10001000 | 136 |
10001001 | 137 |
10001010 | 138 |
10001011 | 139 |
10001100 | 140 |
10001101 | 141 |
10001110 | 142 |
10001111 | 143 |
10010000 | 144 |
10010001 | 145 |
10010010 | 146 |
10010011 | 147 |
10010100 | 148 |
10010101 | 149 |
10010110 | 150 |
10010111 | 151 |
10011000 | 152 |
10011001 | 153 |
10011010 | 154 |
10011011 | 155 |
10011100 | 156 |
10011101 | 157 |
10011110 | 158 |
10011111 | 159 |
10100000 | 160 |
10100001 | 161 |
10100010 | 162 |
10100011 | 163 |
10100100 | 164 |
10100101 | 165 |
10100110 | 166 |
10100111 | 167 |
10101000 | 168 |
10101001 | 169 |
10101010 | 170 |
10101011 | 171 |
10101100 | 172 |
10101101 | 173 |
10101110 | 174 |
10101111 | 175 |
10110000 | 176 |
10110001 | 177 |
10110010 | 178 |
10110011 | 179 |
10110100 | 180 |
10110101 | 181 |
10110110 | 182 |
10110111 | 183 |
10111000 | 184 |
10111001 | 185 |
10111010 | 186 |
10111011 | 187 |
10111100 | 188 |
10111101 | 189 |
10111110 | 190 |
10111111 | 191 |
11000000 | 192 |
Binary | Decimal |
---|---|
11000001 | 193 |
11000010 | 194 |
11000011 | 195 |
11000100 | 196 |
11000101 | 197 |
11000110 | 198 |
11000111 | 199 |
11001000 | 200 |
11001001 | 201 |
11001010 | 202 |
11001011 | 203 |
11001100 | 204 |
11001101 | 205 |
11001110 | 206 |
11001111 | 207 |
11010000 | 208 |
11010001 | 209 |
11010010 | 210 |
11010011 | 211 |
11010100 | 212 |
11010101 | 213 |
11010110 | 214 |
11010111 | 215 |
11011000 | 216 |
11011001 | 217 |
11011010 | 218 |
11011011 | 219 |
11011100 | 220 |
11011101 | 221 |
11011110 | 222 |
11011111 | 223 |
11100000 | 224 |
11100001 | 225 |
11100010 | 226 |
11100011 | 227 |
11100100 | 228 |
11100101 | 229 |
11100110 | 230 |
11100111 | 231 |
11101000 | 232 |
11101001 | 233 |
11101010 | 234 |
11101011 | 235 |
11101100 | 236 |
11101101 | 237 |
11101110 | 238 |
11101111 | 239 |
11110000 | 240 |
11110001 | 241 |
11110010 | 242 |
11110011 | 243 |
11110100 | 244 |
11110101 | 245 |
11110110 | 246 |
11110111 | 247 |
11111000 | 248 |
11111001 | 249 |
11111010 | 250 |
11111011 | 251 |
11111100 | 252 |
11111101 | 253 |
11111110 | 254 |
11111111 | 255 |
If you want to link to Binary To Decimal Converter page, please use the codes provided below!
FAQs for Binary to Decimal Converter
What is a Binary to Decimal Converter?
A Binary to Decimal Converter is a tool that transforms binary (base-2) numbers into their decimal (base-10) equivalents, facilitating the conversion between these two number systems.
What is the fastest way to convert binary to decimal?
Write the binary number and count the power of 2 from right to left, starting from 0 onwards. Now each binary number has the corresponding power of 2 starting from right to left. So the most significant bit will have the highest power of 2. The final answer will be converted into a decimal number that is base 10.
Is it possible to convert binary to decimal?
To convert a binary number to decimal we need to perform a multiplication operation on each digit of a binary number from right to left with powers of 2 starting from 0 and add each result to get the decimal number of it.
What is the algorithm for converting binary to decimal?
The formula to convert a binary number to decimal involves multiplying each binary digit by the corresponding power of 2 and summing up the results. For example, to convert the binary number "1010" to decimal: (1 2^3) + (0 2^2) + (1 2^1) + (0 2^0) = 8 + 0 + 2 + 0 = 10. 3.
Why is binary faster?
A binary file is usually very much smaller than a text file that contains an equivalent amount of data. I/O with smaller files is faster, too, since there are fewer bytes to move.